A conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier
نویسندگان
چکیده
We present a new numerical scheme for solving a conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier. Since the well-known classical Allen–Cahn equation does not have mass conservation property, Rubinstein and Sternberg introduced a nonlocal Allen–Cahn equation with a time dependent Lagrange multiplier to enforce conservation of mass. However, with their model it is difficult to keep small features since they dissolve into the bulk region. One of the reasons for this is that mass conservation is realized by a global correction using the time-dependent Lagrange multiplier. To resolve the problem, we use a space–time dependent Lagrange multiplier to preserve the volume of the system and propose a practically unconditionally stable hybrid scheme to solve the model. The numerical results indicate a potential usefulness of our proposed numerical scheme for accurately calculating geometric features of interfaces. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Mathematical model and its fast numerical method for the tumor growth.
In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al., Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor. Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-order Allen--Cahn equation with a space--time dependent Lagrange multiplier instead of using the fourth-order Cahn--Hil...
متن کاملPrimal-dual active set methods for Allen-Cahn variational inequalities
This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local con...
متن کاملAllan-Cahn and Cahn-Hilliard variational inequalities solved with Optimization Techniques
Parabolic variational inequalities of Allen-Cahn and CahnHilliard type are solved using methods involving constrained optimization. Time discrete variants are formulated with the help of Lagrange multipliers for local and non-local equality and inequality constraints. Fully discrete problems resulting from finite element discretizations in space are solved with the help of a primal-dual active ...
متن کاملThe existence of global attractor for a Cahn-Hilliard/Allen-Cahn equation
In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0
متن کاملNon-local Allen-Cahn systems: Analysis and a primal dual active set method
We show existence and uniqueness of a solution for the non-local vector-valued Allen-Cahn variational inequality in a formulation involving Lagrange multipliers for local and non-local constraints. Furthermore, we propose and analyze a primal-dual active set method for local and non-local vector-valued Allen-Cahn variational inequalities. Convergence of the primal-dual active set algorithm is s...
متن کامل